

Rapid communication

Rapid dendritic Ca²⁺ influx is associated with induction of homosynaptic long-term depression in adult rat hippocampus

Satoru Otani *, John A. Connor 1

Roche Institute of Molecular Biology, 340 Kingsland Street, Nutley, NJ 07110, USA

Received 4 November 1996; accepted 5 November 1996

Abstract

Homosynaptic long-term depression was induced in area CA1 of adult hippocampus by prolonged low-frequency stimulation (900 pulses at 2 Hz) in the presence of the GABA_A receptor antagonist picrotoxin. Using ratio imaging with fura-2, we demonstrate that the induction of this long-term depression is associated with a rapid and transient ($\approx 30 \text{ s}$) dendritic Ca²⁺ increase ($\approx 500 \text{ nM}$) dependent on the activation of voltage-gated Ca²⁺ channels. This transient increase, by itself, was insufficient for long-term depression induction.

Keywords: Long-term depression; Ca²⁺, dendritic; Metabotropic receptor

Prolonged low-frequency synaptic stimulation induces homosynaptic long-term depression in hippocampal slices prepared from young animals (Dudek and Bear, 1993; Mulkey and Malenka, 1992). In adult hippocampus, the same protocol of stimulation induces homosynaptic longterm depression if it is applied in combination with a pharmacological block of γ-aminobutyric acid-A (GABA_A)-ergic inhibition (Otani and Connor, 1996). The mechanisms underlying homosynaptic long-term depression are largely unknown. However, like long-term potentiation, the long-term depression induction requires postsynaptic Ca²⁺ (Mulkey and Malenka, 1992). It is hypothesized that long-term potentiation and long-term depression are triggered at different postsynaptic concentrations of Ca²⁺ ([Ca²⁺], e.g., Artola and Singer, 1993). Although evidence is generally consistent with this dual-threshold model (e.g., Cummings et al., 1996), no study has been conducted in the hippocampus to directly measure [Ca²⁺] changes during long-term depression induction. In the present study, we measured dendritic [Ca²⁺] changes during long-term depression induction in adult hippocampus using ratio measurements of fura-2 fluorescence.

Hippocampal slices were prepared and maintained as described previously (Otani and Connor, 1996). Conventional intracellular recordings (with 3 M K-acetate-containing micropipettes) were made from CA1 pyramidal neurons. Schaffer collateral-pyramidal cell synapses were orthodromically tested at 0.017 Hz. Long-term depression was induced by 900 pulses delivered at 2 Hz. In one group, neurons were impaled with electrodes containing 20 mM fura-2 in the tip. Fluorescence measurement and ratio imaging for intracellular [Ca²⁺] were made with the methods previously utilized in our laboratory (Petrozzino and Connor, 1994).

In the presence of picrotoxin (50 μ M) in the bath, the 2 Hz stimulation induced homosynaptic long-term depression of the monosynaptic excitatory postsynaptic potential (EPSP; $-32 \pm 12\%$ at 45 min, n = 7, P < 0.03 over control, t-test), as we found previously (Otani and Connor, 1996). The same stimuli failed to induce long-term depression in the absence of picrotoxin (2.8 \pm 4.7%, n = 6). This long-term depression is N-methyl-D-aspartate (NMDA) receptor independent, since application of DL-2-amino-5phosphonovaleric acid (AP5, 100 µM) did not block long-term depression ($-36 \pm 6.3\%$, n = 5, P < 0.02). In a separate group of neurons, increases of [Ca²⁺] during 2 Hz stimulation were determined by fura-2 ratio imaging. In the presence of picrotoxin, long-term depression condition, 2 Hz stimulation was accompanied by rapid increases of [Ca²⁺] in medial/distal dendrites (244 \pm 84% at peak, n = 7, P < 0.01 over control) which largely decayed within

^{*} Corresponding author. Present address: Laboratoire de Neurobiologie et Neuropharmacologie du Développement, Université de Paris-Sud, Orsay 91405, France. Fax: (33-1) 6915-6828; e-mail: otani@pop.u-psud.fr

¹ Present address: The Lovelace Institutes, 2425 Ridgecrest Dr. S.E., Albuquerque, NM 87108, USA.

30 s (Fig. 1). In the absence of picrotoxin, little or no $[Ca^{2+}]$ increases were observed $(35 \pm 13\%, n = 9, Fig. 1)$. DL-APV did not block dendritic $[Ca^{2+}]$ increases seen in the picrotoxin condition $(198 \pm 62\%, n = 13, P < 0.03)$. In contrast, membrane hyperpolarization (-110 mV) during 2 Hz stimuli abolished dendritic $[Ca^{2+}]$ increases $(20 \pm 14\%, n = 8, P > 0.5)$ over control). In a separate group of neurons without fura-2, membrane hyperpolarization significantly attenuated long-term depression (n = 5, P < 0.01, analysis of variance). Together, these data suggest that voltage-gated Ca^{2+} channels rather than NMDA receptors contribute to the $[Ca^{2+}]$ increases and long-term depression induction.

In 17 of the fura-2-loaded neurons, simultaneous electrophysiological recordings were made. The majority of the neurons in long-term depression-inducing conditions (i.e., picrotoxin in the bath) underwent long-term depression $(6/9, -59 \pm 5.0\%)$, whereas without picrotoxin, only 1 of 8 neurons showed depression. These data confirm that the [Ca²⁺] increases we observed in the presence of fura-2 are within a range sufficient for long-term depression induction. Finally, we compared the mean absolute peak value of [Ca²⁺] during the long-term depression-inducing conditions with that during long-term potentiation-inducing condition (100 Hz with picrotoxin). We found that longterm depression is associated with more moderate [Ca²⁺] increases than long-term potentiation (464 \pm 66 nM vs. $1.25 \pm 0.36 \mu M$, n = 25 and 6, respectively, P < 0.005). This is consistent with an observation recently made in visual cortex (Yasuda and Tsumoto, 1996). In the present

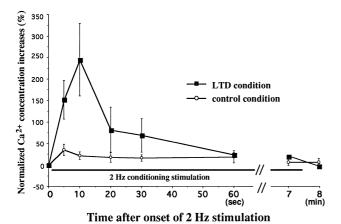


Fig. 1. Homosynaptic long-term depression induction (900 pulses at 2 Hz in the presence of picrotoxin) in adult hippocampus is associated with rapid increases of dendritic $\mathrm{Ca^{2+}}$ concentrations measured by fura-2 ratio imaging (filled squares). In the absence of picrotoxin, the 2 Hz stimuli do not induce long-term depression and there were no or little $\mathrm{Ca^{2+}}$ increases (P < 0.01, open circles). The $\mathrm{Ca^{2+}}$ increases are AP5-insensitive but sensitive to membrane hyperpolarization, suggesting the involvement of voltage-gated $\mathrm{Ca^{2+}}$ channels (see text). Also, the peak increase was more moderate than that during long-term potentiation-inducing stimuli (see text). Basal $\mathrm{Ca^{2+}}$ levels were 151 ± 12 nM and 169 ± 14 nM in control and picrotoxin groups, respectively.

study, the measurements were made in the primary and secondary dendrites where AP5 treatment has little effect on the [Ca²⁺] increases. Much higher, AP5-sensitive increases were detected in dendritic spines and tertiary dendrites using a low-affinity Ca²⁺ indicator (Petrozzino et al., 1995). The [Ca²⁺] increases during 100 Hz stimuli observed in the present study may represent a NMDA-independent induction of long-term potentiation (e.g., Petrozzino and Connor, 1994).

Our results provide the first direct evidence in the hippocampus for dendritic $[{\rm Ca}^{2+}]$ increases during long-term depression induction. Duration of the increases (≈ 30 s) is much shorter than the duration of conditioning stimuli (7.5 min). Since a conditioning this short is insufficient to induce long-term depression (n=5, data not shown), additional factors must cooperate with the dendritic ${\rm Ca}^{2+}$ influx. Our more recent data indicate that synaptic stimulation of phospholipase C-coupled metabotropic (mGlu) receptors during and even after 2 Hz stimulation is necessary for long-term depression induction. We therefore propose that homosynaptic long-term depression induction in adult hippocampus involves rapid $[{\rm Ca}^{2+}]$ influx and extended activation of mGlu receptors.

Acknowledgements

We thank R. Sun and L.M. Verselis for technical assistance and D. Linden and A. Greenwood for comments on the work.

References

Artola, A. and W. Singer, 1993, Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation, Trends Neurosci. 16, 480.

Cummings, J.A., R.M. Mulkey, R.A. Nicoll and R.C. Malenka, 1996, Ca²⁺ signaling requirements for long-term depression in the hippocampus, Neuron 16, 825.

Dudek, S.M. and M.F. Bear, 1993, Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus, J. Neurosci. 13, 2910.

Mulkey, R.M. and R.C. Malenka, 1992, Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus, Neuron 9, 967.

Otani, S. and J.A. Connor, 1996, A novel synaptic interaction underlying induction of long-term depression in the area CA1 of adult rat hippocampus, J. Physiol. 492, 225.

Petrozzino, J.J. and J.A. Connor, 1994, Dendritic Ca²⁺ accumulations and metabotropic glutamate receptor activation associated with an *N*-methyl-D-aspartate receptor-independent long-term potentiation in hippocampal CA1 neurons, Hippocampus 4, 546.

Petrozzino, J.J., Pozzo Miller, L.D. and J.A. Connor, 1995, Micromolar Ca²⁺ transients in dendritic spines of hippocampal pyramidal neurons in brain slice, Neuron 14, 1223.

Yasuda, H. and T. Tsumoto, 1996, Long-term depression in rat visual cortex is associated with a lower rise of postsynaptic calcium than long-term potentiation, Neurosci. Res. 24, 265.